Two Standard Categories of NGS Assemblers

- “Overlap-layout-consensus” (OLC) approach
 - Overlap graph

- de Bruijn graph (DBG) approach
 - k-mer graph
 - Especially useful for assembly from short reads

A simple case

- Let’s consider the following sequence:

 Generate k-mers
 \(k = 3 \)

 Genome: ATGCGGTGCAATG

 A circular genome

 For each k-mer, let’s create the (k-1)-mer “prefix” and “suffix” nodes
CSE 427 Computational Biology, Winter 2015

A simple case

- Let's consider the following sequence:

Genome: ATGCGGTGC

A less simple case

(a) [5 points] Draw the de Bruijn graph for the following set of reads:

ATTAC TACAG GATTA ACAGA CATAC ATCA AGATT

Why are we so different?

- Different "phenotypes" (observable traits)
 - Appearance
 - Disease susceptibility
 - Drug responses

- Different "genotype"
 - Individual-specific DNA
 - 3 billion-long string

Genetics
Motivation

- Which sequence variation affects a phenotype?
 - Better understanding disease mechanisms
 - Personalized medicine

Sequence variations

DNA is 3 billion long!

Instruction

Obese? 15%
Bald? 30%
Diabetes? 6.2%
Parkinson’s disease? 0.3%
Heart disease? 20.1%
Colon cancer? 6.5%

Outline

- Basic concepts
 - Meiosis, genetic recombination
 - Allele, allele frequencies, genotype frequencies
 - Genotyping

- Statistical methods for mapping QTL
 - What is QTL?
 - Experimental animals
 - Analysis of variance
 - Statistical significance of the LOD score

Humans have 23 pairs of chromosomes

Source: http://www.dirkschweitzer.net/
Homologous chromosomes

Transmission of genetic information

- **Meiosis** is the process that results in the formation of gametes (sperm cells and egg cells)

Forming the next generation

Outline

- Basic concepts
 - Meiosis, genetic recombination
 - Allele, allele frequencies, genotype frequencies
 - Genotyping

- Statistical methods for mapping QTL
 - What is QTL?
 - Experimental animals
 - Analysis of variance
 - Statistical significance of the LOD score
Alleles

- Alternative forms of a particular sequence
- Each allele has a frequency, which is the proportion of chromosomes of that type in the population

Allele frequencies for C, G, –

Genotype

- The pair of alleles carried by an individual
 - If there are n alternative alleles ...
 - ... there will be $n(n+1)/2$ possible genotypes
 - In most cases, there are 3 possible genotypes

Homozygotes
- The two alleles are in the same state
 - (e.g. CC, GG, AA)

Heterozygotes
- The two alleles are different
 - (e.g. CG, AC)

Genotype frequency

- Since alleles occur in pairs, these are a useful descriptor of genetic data.

- However, in any non-trivial study we might have a lot of frequencies to estimate.
 - p_{AA}, p_{AB}, p_{AC}, p_{BB}, p_{BC}, p_{CC}, ...
Genotype vs. allele frequencies

- Genotype frequencies lead to allele frequencies.
- For example, for two alleles:
 - \(p_A = p_{AA} + \frac{1}{2} p_{AB} \)
 - \(p_B = p_{BB} + \frac{1}{2} p_{AB} \)
- However, the reverse is also possible!

Hardy-Weinberg Equilibrium

- Relationship described in 1908
 - Hardy, British mathematician
 - Weinberg, German physician
- Shows \(n \) allele frequencies determine \(\frac{n(n+1)}{2} \) genotype frequencies
 - Large populations
- Random union of the two gametes produced by two individuals

HWE assumption

- Allele frequencies lead to genotype frequencies.
- For example, for two alleles:
 - \(p_{AA} = p_A^2 \)
 - \(p_{BB} = p_B^2 \)
 - \(p_{AB} = 2 p_A p_B \)

Outline

- Basic concepts
 - Meiosis, genetic recombination
 - Allele, allele frequencies, genotype frequencies
 - Genotyping
- Statistical methods for mapping QTL
 - What is QTL?
 - Experimental animals
 - Analysis of variance
 - Statistical significance of the LOD score
Genotyping chip

Probes

![Genotyping chip image](image)

Outline

- **Basic concepts**
 - Meiosis, genetic recombination
 - Allele, allele frequencies, genotype frequencies
 - Genotyping

- **Statistical methods for mapping QTL**
 - What is QTL?
 - Experimental animals
 - Analysis of variance
 - Statistical significance of the LOD score
Definition of QTLs
- The genomic regions that contribute to variation in a quantitative phenotype (e.g. blood pressure, height)

QTL analysis
- Linking phenotype data and genotype data (genetic markers), in order to explain the genetic basis of variation in complex phenotypes

Goals:
- Link certain complex phenotypes to specific regions of chromosomes
- Identify precise location of these regions and the interaction with phenotypes

Quantitative Trait Locus (QTL)
- Two or more strains of organisms that differ genetically with regard to the phenotype of interest
 - Experimental animals
 - Backcross experiment (only 2 genotypes for all genes)
 - F2 intercross experiment
 - Genetic markers that distinguish these parental lines
 - Single nucleotide polymorphisms (SNPs)

Backcross experiment
- Inbred strains
 - Homozygous genomes
- Advantage
 - Only two genotypes
- Disadvantage
 - Relatively less genetic diversity

F2 intercross experiment
- Parental generation
- First filial (F1) generation
- F2 generation

Karl Broman, Review of statistical methods for QTL mapping in experimental crosses
Trait distributions: a classical view

QTL analysis

- **Goals**
 - Identify the genomic regions (QTLs) contributing to variation in the phenotype.
 - Identify at least one QTL.
 - Form confidence interval for QTL location.
 - Estimate QTL effects.

Outline

- **Basic concepts**
 - Meiosis, genetic recombination
 - Allele, allele frequencies, genotype frequencies
 - Genotyping

- **Statistical methods for mapping QTL**
 - What is QTL?
 - Experimental animals
 - Analysis of variance
 - Statistical significance of the LOD score